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Abstract

Flywheel based pitchers are very common ways to propel projectiles. They are well-suited to
many such cases in that they are reasonably light, do not require keeping track of states, provide
inherent strength-of-shot adjustment, and can be used in continous applications.

Unfortunately, they are somewhat of a mystery, with design essentially relegated to trial-and-error
rather than intuitive understanding or numerical simulation. This paper aims to change that.

1 Hooded Pitcher
Consider the following hooded pitcher. A wheel (red) is spun up to an initial RPM, and then a ball (blue)
is introduced between it and an arced hood (black), which is concentric with the wheel.

Figure 1: Hooded pitcher: example and schematic.

There are already many parameters of interest in this system.

dw, the wheel diameter

Iw, the wheel’s moment of inertia

ωw,0, the wheel’s initial velocity

db, the ball’s initial diameter

Ib, the ball’s moment of inertia

w, the gap between the hood and the surface of the wheel

θ, the angle between inlet and outlet
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The ball is accelerated as the wheel makes contact with the ball. The hood provides constraint, keeping
the ball from simply spinning. Free-body diagrams may make this more clear.

Nw

Nh

Fw

Fh

=

mbab

mbab,r

Ibαb

Figure 2: Free-Body and Kinetic Diagrams for Ball

For the sake of simplicity, gravity is neglected during this split-second interaction. This leads to force
balances

Fh + Fw = mbab (1)

Nh −Nw = mbab,r = mb
v2

b

R
(2)

(Fw − Fh)w2 = Ibαb, (3)

where R is the radius of the path travelled by the ball (R = dw+w
2 ).

Nw

Fw

=

Iwαw

Figure 3: Free-Body and Kinetic Diagrams for Wheel

This leads to the torque balance

−Nw
dw

2 = Iwαw (4)

At this point we have four governing equations, four unknown forces, and four unknown kinematic
properties. Let’s recap and solve what we have so far to get expressions for the accelerations.

αb = (Fw − Fh) w2Ib
(5)

ab = Fh + Fw

mb
(6)

αw = −Fw
dw

2Iw
(7)
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The normal force comes from the compression of the ball and wheel. But the ball is also accelerating
along the axis of the compression, making this not quite straightforward. To help simplify, we’ll also
assume an infinitely rigid wheel (which is often a valid assumption).

Nh Nw

mbab,r = mbv
2
b/R

Figure 4: Massed spring model of the ball.

The inertial forces can be resolved in such a spring of stiffness kb squeezed by δ as so:

Nh = kbδ + mbab,r

2 = kbδ + mbv
2
b

2R (8)

Nw = kbδ −
mbab,r

2 = kbδ −
mbv

2
b

2R (9)

Observation: As the ball accelerates through the hood, it lifts off the wheel until Nw = 0. This effect is
magnified with a smaller arc radius.

2 Developing a Friction Model
We can relate the normal forces to the frictional or tangential forces with a basic coloumb friction
model. More sophisticated models are probably more accurate, but the intent of this model is to provide
intuitively understandable results and general guidelines which should be followed up by real-world
testing, so this is an appropriate model.

Fh ≤ µhNh sign(0− vb,top) (10)
Fw ≤ µwNw sign(vw,surf − vb,bottom) (11)

Implementing this verbatim poses serious simulation problems. The simulation will oscillate back and
forth between a positive and negative sign function, potentially crashing. There are many strategies to
solve this problem, usually by solving accuracy of the math or investing in a complex solver. However,
our case can be simplified algebraically up front, which will help make a much more stable solver.

First, recognize that the sign associated with the wheel should either be positive or zero. The ball isn’t
going to start over-spinning with the wheel. Second, recognize that the spin of the ball should never
exceed the speed of the ball such that the top of the ball travels backwards, so its sign should be negative
or zero. Third, the sign becomes zero, the condition to calculate is no longer one of two surfaces at
arbitrary velocities exchanging forces, but of two surfaces that have coupled. This brings the driving
physics away from force balance and towards pure kinematics. That is to say,

vw,surf = vb,bottom

aw,surf = ab,bottom

αw
dw

2 = ab + αb
w

2 (12)

and

0 = vb,top

0 = ab,top

0 = ab − αb
w

2 . (13)
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Substituting what we found earlier about the accelerations gives us

−Fw
dw

2Iw

dw

2 = Fh + Fw

mb
+ (Fw − Fh) w2Ib

w

2

Fw
dw

2Iw
+ Fw

mb
+ Fw

w

2Ib

w

2 = −Fh

mb
+ Fh

w

2Ib

w

2

Fw = Fh

w2

4Ib
− 1

mb

dw

2Iw
+ 1

mb
+ w2

4Ib

(14)

in the case of no wheel slip, and

0 = Fh + Fw

mb
− (Fw − Fh) w2Ib

w

2
Fh

mb
+ Fh

w

2Ib

w

2 = −Fw

mb
+ Fh

w

2Ib

w

2

Fh = Fw

w2

4Ib
− 1

mb

w2

4Ib
+ 1

mb

(15)

in the case of no hood slip. In these cases, the force of one is directly proportional to the other;

Fh = K1Fw (16)
Fw = K2Fh (17)

This means that when both hood and wheel stop slipping,

Fh = Fw = 0 if K1 6= K2 6= 0 (18)

But how is state determined? We simply go back to the sign equations.

top attached when 0 ≤ vb − ωb
w

2 (19)

bottom attached when ωw
dw

2 ≤ vb + ωb
w

2 (20)

This developed friction model can be summarized with this pseudocode, which would be ran every
iteration of the simulation loop.

All that’s left is to set up the state equations and initial conditions.

d

dt
ωb = αb (21)

d

dt
vb = ab (22)

d

dt
ub = vb (23)

d

dt
ωw = αw (24)

vb(0) = 0 (25)
ub(0) = 0 (26)
ωw(0) = ωw,0 (27)

when ub ≥ θR terminate (28)
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Fw← mw Nw
Fh← mh Nh
if hood attached and wheel attached then

Fw← 0
Fh← 0

else if wheel attached then
Fw← Fw in attached state

else if hood attached then
Fh← Fh in attached state

... insert interesting simulation code ...

if ball top speed goes positive then
hood attached← true

if ball bottom speed exceeds wheel speed then
wheel attached← true

3 Dual-Wheel Pitchers
Dual wheel pitchers are a little more complex as the effective gap is not constant during the ball’s motion,
and the wheel’s normal forces contribute to ball acceleration. However, the basic strategy remains the
same.

Figure 5: Dual wheel pitcher: example and schematic.

Some critical dimensions are:

5



ØdL

ØdT

Ødb

x
y−θ

−ψ

Figure 6: Dual wheel pitcher key dimensions and coordinates. Note sign on angles.

Geometry allows us to relate these as so:

tanθ = x

y
(29)

tanψ = x
dL+dT

2 + w − y
(30)

The instantaneous radii of the ball (distance from center of ball to top and bottom wheels) can be readily
computed.

RB =
√
x2 + y2 − dB

2 (31)

RT =
√
x2 + (dT + dB

2 + w − y)2 − dT

2 (32)

To analyze the ball, begin by drawing free-body and kinetic diagrams.

x

y

NL

NT

FL

FT

=

mbay

mbax

Ibαb

Figure 7: Free-Body and Kinetic Diagrams for Ball
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FT cosψ + FLcosθ +NT sinψ +NLsinθ = mbax (33)
FT sinψ − FLsinθ −NT cosψ +NLcosθ = mbay (34)

FLRL − FTRT = Ibαb (35)

We will assume negligible vertical acceleration, so ay = 0. We can then solve and find

ax = FT cosψ + FLcosθ +NT sinψ +NLsinθ

mb
(36)

αb = FLRL − FTRT

Ib
(37)

As for the flywheel, there are two cases: the flywheels are separately powered and not linked, and the
flywheels are centrally powered and linked. The indepdendent case is the same as that of the hooded
pitcher, that is to say,

αT,free = −FT
dT

2IT
(38)

αL,free = −FL
dL

2IL
(39)

In the linked case, a gear ratio G constrains the two wheels, which imparts torque Tw.

Nw

Fw

Tw
=

Iwαw

Figure 8: Free-Body and Kinetic Diagrams for Wheel

This leads to the torque balance

−Nw
dw

2 − Tw = Iwαw

−FT
dT

2 − TT = ITαT (40)

−FB
dB

2 − TB = IBαB (41)

The two wheels are coupled by a gear reduction G.

αL = αTG (42)
−TLG = TT (43)

Solving these four equations yields
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αL,coupled =
−FT

dT

2G − FL
dL

2
IL + IT /G2 (44)

αT,coupled = αL/G =
−FT

dT

2G − FL
dL

2
GIL + IT /G

(45)

The ball can, again, be modeled as a spring.

NL

NT

Figure 9: 2-D spring model for ball

The friction model that follows is the same idea as that of the hooded pitcher, though it contains many
more terms.

When the lower wheel grips:

vL,surf = vb,bottom

aL,surf = ab,bottom

αL
dL

2 = abcosθ + αbRL (46)

(47)

When the top wheel grips:

vT,surf = vb,top

aT,surf = ab,top

αT
dT

2 = abcosψ − αbRT (48)

(49)
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First let’s handle the simpler case of free, uncoupled wheels. For the lower side, we need to find FL.

−FL
dL

2IL

dL

2 = (FT cosψ + FLcosθ +NT sinψ +NLsinθ

mb
)cosθ + FLRL − FTRT

Ib
RL (50)

(NT sinψ +NLsinθ

mb
)cosθ + FT

RT

Ib
RL −

FT

mb
cosψcosθ − FL

dL

2IL

dL

2 −
FL

mb
cos2θ − FL

R2
L

Ib
= 0 (51)

recognizing that this can be written in the form of A+BFT + CFL = 0 (52)

A = (NT sinψ +NLsinθ)
cosθ

mb
(53)

B = RTRL

Ib
− cosψcosθ

mb
(54)

C = − d2
L

4IL
− cos2θ

mb
− R2

L

Ib
(55)

FL, bottom gripped, free wheels = A+BFT

−C
(56)

For the top side, we need FT .

−FT
dT

2IT

dT

2 = (FT cosψ + FLcosθ +NT sinψ +NLsinθ

mb
)cosψ − FLRL − FTRT

Ib
RT (57)

(NT sinψ +NLsinθ

mb
)cosψ − FT

RT

Ib
RT −

FT

mb
cos2ψ − FT

dT

2IT

dT

2 + FL

mb
cosθcosψ − FL

RLRT

Ib
= 0 (58)

recognizing that this can be written in the form of D + EFL + FFT = 0 (59)

D = (NT sinψ +NLsinθ)
cosψ

mb
(60)

E = RLRT

Ib
− cosθcosψ

mb
(61)

F = − d2
T

4IT
− cos2ψ

mb
− R2

T

Ib
(62)

FT, top gripped, free wheels = D + EFL

−F
(63)

The same analysis is repeated for the coupled flywheel case. When the lower wheel grips, we need to
find FL.

−FT
dT

2G − FL
dL

2
IL + IT /G2

dL

2 =

(FT cosψ + FLcosθ +NT sinψ +NLsinθ

mb
)cosθ + FLRL − FTRT

Ib
RL (64)

(NT sinψ +NLsinθ

mb
)cosθ + FT

RT

Ib
RL −

FT

mb
cosψcosθ − FT

dT

2G

IL + IT /G2
dL

2

−FL

dL

2
IL + IT /G2

dL

2 −
FL

mb
cos2θ − FL

R2
L

Ib
= 0 (65)

recognizing that this can be written in the form of A+BFT + CFL = 0 (66)

A = (NT sinψ +NLsinθ)
cosθ

mb
(67)

B = RTRL

Ib
− cosψcosθ

mb
−

dT dL

4G

IL + IT /G2 (68)

C = −
d2

L

4
IL + IT /G2 −

cos2θ

mb
− R2

L

Ib
(69)

FL, bottom gripped, free wheels = A+BFT

−C
(70)
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For the top side, we need FT .

−FT
dT

2G − FL
dL

2
GIL + IT /G

dT

2 =

(FT cosψ + FLcosθ +NT sinψ +NLsinθ

mb
)cosψ − FLRL − FTRT

Ib
RT (71)

(NT sinψ +NLsinθ

mb
)cosψ − FT

RT

Ib
RT −

FT

mb
cos2ψ − FT

dT

2G

GIL + IT /G

dT

2

−FL

dL

2
GIL + IT /G

dT

2 −
FL

mb
cosθcosψ + FL

RLRT

Ib
= 0 (72)

recognizing that this can be written in the form of D + EFL + FFT = 0 (73)

D = (NT sinψ +NLsinθ)
cosψ

mb
(74)

E = RLRT

Ib
−

dLdT

4
GIL + IT /G

− cosθcosψ

mb
(75)

F = −
d2

T

4G

GIL + IT /G
− cos2ψ

mb
− R2

T

Ib
(76)

FT, top gripped, free wheels = D + EFL

−F
(77)

For the case of both being gripped, we simply solve simultaneously.

A+BFT + CFL = 0 and D + EFL + FFT = 0

FL, both gripped = AF −BD
BE − CF

(78)

FT, both gripped = CD −AE
BE − CF

(79)

State is determined as

top attached when ωT
dT

2 ≤ vb − ωbRT (80)

lower attached when ωL
dL

2 ≤ vb + ωbRL. (81)

All that’s left is to set up the state equations and initial conditions.

d

dt
ωb = αb (82)

d

dt
vb = ab (83)

d

dt
x = vb (84)

d

dt
ωT = αT (85)

d

dt
ωL = αL (86)

vb(0) = 0 (87)
x(0) = 0 (88)

ωT (0) = ωT,0 (89)
ωL(0) = ωL,0 (90)

when x > xend terminate (91)
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4 Hybrid Pitchers
An interesting design proliferated during the FRC 2020 season, consisting of a hooded pitcher with an
extra set of ’afterburner’ wheels where the hood would terminate. This could be modeled fairly easily
(I simply haven’t gotten to it yet). I may transfer the calculator into a single one consisting of only the
hybrid pitcher, as hooded and dual-wheel pitchers could be considered just special cases.

5 Sanity Checks
These are new analysis techniques so there is no prior art to compare to. However, we can still perform
some sanity checks.

Figure 10: Hooded Flywheel Calculator - Exemplary Case

We can quickly check the relationship between ball velocity, ball spin, and wheel speed at exit. If the
ball has finally latched onto the wheel, we’d see that the surface speeds of the wheel and ball should
match. That is to say,

vb + ωb
w

2 = ωw
dw

2 . (92)

Numerically in this case,

31.766ft
s + 1456 RPM× 2π/60rad/s

RPM × 5
2 in× ft

12in = 2426.6 RPM× 2π/60rad/s
RPM × 6

2 in× ft
12in (93)

63.5310ft
s ≈ 63.5282ft

s . (94)

Is the wheel drop realistic? Let’s look at the lost energy. There’s definitely some losses as the ball
interaction has friction, but let’s quantify it.
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E = mbv
2
b + Ibω

2
b + Iwω

2
w (95)

Einit = 4lbm in2 × (3000RPM)2 = 115.5J (96)
Efinal = 0.3lbm× (31.766ft/s)2

+2
50.3lbm(5in

2 )2 × (1456RPM)2

+4lbm in2 × (2426RPM)2 = 93.45J (97)

η = Efinal

Einit
= 93.45J

115.5J = 80.9% (98)

That’s an efficiency less than 100% (good, physics didn’t break), and it isn’t dreadfully low (signalling
that there isn’t too much slippage).

The rev-up simulation does have some prior art to compare to, luckily. We can run basically the exact
same simulation in the simple mechanism calculator.

Figure 11: Revving up a 4 lbm in2 flywheel with a single NEO motor.

This shows it takes 0.154 seconds to rev up- nearly the same as the 0.153 in the previous example. Note
that the efficiency is specified as 100 percent- this is because the rev-up calculator instead uses a bearing
friction value that the general mechanism calculator doesn’t have.
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