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Abstract

Flywheel based pitchers are very common ways to propel projectiles. They are well-suited to
many such cases in that they are reasonably light, do not require keeping track of states, provide
inherent strength-of-shot adjustment, and can be used in continous applications.

Unfortunately, they are somewhat of a mystery, with design essentially relegated to trial-and-error
rather than intuitive understanding or numerical simulation. This paper aims to change that.

1 Hooded Pitcher

Consider the following hooded pitcher. A wheel (red) is spun up to an initial RPM, and then a ball (blue)
is introduced between it and an arced hood (black), which is concentric with the wheel.

Figure 1: Hooded pitcher: example and schematic.

There are already many parameters of interest in this system.
dy, the wheel diameter
I,,, the wheel’s moment of inertia
wy,0, the wheel’s initial velocity
dp, the ball’s initial diameter
I, the ball’s moment of inertia
w, the gap between the hood and the surface of the wheel

0, the angle between inlet and outlet



The ball is accelerated as the wheel makes contact with the ball. The hood provides constraint, keeping
the ball from simply spinning. Free-body diagrams may make this more clear.
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Figure 2: Free-Body and Kinetic Diagrams for Ball
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For the sake of simplicity, gravity is neglected during this split-second interaction. This leads to force
balances

Fy, + F, = mpay (1)
vj
Np — Ny = mpap,, = T (2)
w
(Fuw = Fn) 5 = Iyow, (3)

where R is the radius of the path travelled by the ball (R = %utw).
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Figure 3: Free-Body and Kinetic Diagrams for Wheel

This leads to the torque balance

duw
—Nw7 = Iwaw (4)

At this point we have four governing equations, four unknown forces, and four unknown kinematic
properties. Let’s recap and solve what we have so far to get expressions for the accelerations.

w
ap = (Fw — Fh)— (5)
21,
F; F,
ap = L+ Fw (6)
mp
d
= —Fugi- (7)



The normal force comes from the compression of the ball and wheel. But the ball is also accelerating
along the axis of the compression, making this not quite straightforward. To help simplify, we’ll also
assume an infinitely rigid wheel (which is often a valid assumption).
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Figure 4: Massed spring model of the ball.

The inertial forces can be resolved in such a spring of stiffness k; squeezed by 4 as so:

2

- mbab,r _ mbvb
Ni = kyd + == = kyd + — (8)

2

. _ MpGb,r _ MYy
Nu = kyd = =22% = b — 5 9)

Observation: As the ball accelerates through the hood, it lifts off the wheel until N, = 0. This effect is
magnified with a smaller arc radius.

2 Developing a Friction Model

We can relate the normal forces to the frictional or tangential forces with a basic coloumb friction
model. More sophisticated models are probably more accurate, but the intent of this model is to provide
intuitively understandable results and general guidelines which should be followed up by real-world
testing, so this is an appropriate model.

Fy, < pup Ny, sign(0 — vptop) (10)
Fw S MwNw Sign(vw,surf - Ub,bottom) (11)

Implementing this verbatim poses serious simulation problems. The simulation will oscillate back and
forth between a positive and negative sign function, potentially crashing. There are many strategies to
solve this problem, usually by solving accuracy of the math or investing in a complex solver. However,
our case can be simplified algebraically up front, which will help make a much more stable solver.

First, recognize that the sign associated with the wheel should either be positive or zero. The ball isn’t
going to start over-spinning with the wheel. Second, recognize that the spin of the ball should never
exceed the speed of the ball such that the top of the ball travels backwards, so its sign should be negative
or zero. Third, the sign becomes zero, the condition to calculate is no longer one of two surfaces at
arbitrary velocities exchanging forces, but of two surfaces that have coupled. This brings the driving
physics away from force balance and towards pure kinematics. That is to say,

Vw,surf = Ub,bottom

A, surf = Ab,bottom

dy
aw? = ab+ab% (12)
and
0= Vb, top
0= Ap,top
O:ab—ab%. (13)



Substituting what we found earlier about the accelerations gives us

dy dy  Fp+F, w w
—F,— e T (B — B ——
21, 2 my + h)QIb 2
dyw F, w w Fy, w w
Fyp—-+—+F,——=—"-+F,——
o, " my, var 2 my M2, 2
w? 1
Fy=F— " (14)
oty + oy T AL
in the case of no wheel slip, and
Fy, + Fy wow
0= — (Fy — Fp)——
mpy ( h)2Ib 2
F w w Fy, w w
chthf**** heT
myp 2[1) 2 my QIb 2
w? 1
F = F, (15)
4L, T my

in the case of no hood slip. In these cases, the force of one is directly proportional to the other;

F, = K, F, (16)
F, = KyF}, (17)

This means that when both hood and wheel stop slipping,

Fp=F,=0if K1 # Ks #0 (18)

But how is state determined? We simply go back to the sign equations.

top attached when 0 < v, — wb% (19)

w

d
bottom attached when ww7 <+ wb% (20)

This developed friction model can be summarized with this pseudocode, which would be ran every
iteration of the simulation loop.

All that’s left is to set up the state equations and initial conditions.

o, = 21
el (21)
d
oy = 22
2V = ab (22)
d
= 2
dtUb (% ( 3)
d
— Wy = 24
T (24)
v(0) = 0 (25)
us(0) = 0 (26)
ww(o) = Ww,0 (27)
when up > OR terminate (28)



Fw + mw Nw
Fh < mh Nh
if hood attached and wheel attached then
Fw<+0
Fh+ 0
else if wheel attached then
Fw + Fuw in attached state
else if hood attached then
Fh < Fh in attached state

. insert interesting simulation code ...

if ball top speed goes positive then
hood attached < true

if ball bottom speed exceeds wheel speed then
wheel attached < true

3 Dual-Wheel Pitchers

Dual wheel pitchers are a little more complex as the effective gap is not constant during the ball’s motion,
and the wheel’s normal forces contribute to ball acceleration. However, the basic strategy remains the
same.

Figure 5: Dual wheel pitcher: example and schematic.

Some critical dimensions are:
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Figure 6: Dual wheel pitcher key dimensions and coordinates. Note sign on angles.

Geometry allows us to relate these as so:

tanf = z

tany i
an = —-————
QL';—dZ—I—w—y

(29)

(30)

The instantaneous radii of the ball (distance from center of ball to top and bottom wheels) can be readily

computed.

dr +d d
RTz\/a:2+(—T+ Thw-y)? - o

To analyze the ball, begin by drawing free-body and kinetic diagrams.
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Figure 7: Free-Body and Kinetic Diagrams for Ball




Frcosy + Frcost + Npsinyg + Npsinf = mya, (33)
Frsiny — Frsin — Npcosy) + Npcosd = mpay (34)
FLRL - FTRT = Ibab (35)
We will assume negligible vertical acceleration, so a, = 0. We can then solve and find
Frcosy + Frcosh + Npsiny + Ny sinf

ay = (36)

mp

FLR; — FrR
ap = L - TIvr (37)
b

As for the flywheel, there are two cases: the flywheels are separately powered and not linked, and the

flywheels are centrally powered and linked. The indepdendent case is the same as that of the hooded
pitcher, that is to say,

dr
ree — —Fr—
arf bym (38)
dr,
AL, free = _FLE (39)

In the linked case, a gear ratio G constrains the two wheels, which imparts torque T,.
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Figure 8: Free-Body and Kinetic Diagrams for Wheel

This leads to the torque balance

d

—Ny— =Ty = Ly,
2
dr
_FT7 - TT = ITaT (40)
d
—FB—2B —Tp =Ipag (41)

The two wheels are coupled by a gear reduction G.

oy = aTG (42)
~T.G =Tr (43)

Solving these four equations yields



d d
“Frgf - Fu

coupled — 44

QL coupled IL +IT/G2 ( )
Sy L S

QT coupled = aL/G = W (45)

The ball can, again, be modeled as a spring.
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Figure 9: 2-D spring model for ball

The friction model that follows is the same idea as that of the hooded pitcher, though it contains many
more terms.

When the lower wheel grips:

VL, surf = Ub,bottom

AL, surf = Ab,bottom

aLé = apcost + ap Ry, (46)
(47)
When the top wheel grips:
UT,surf = Ub,top
QT surf = Gb,top
dr

aT7 = aycosy) — apRr (48)
(49)



First let’s handle the simpler case of free, uncoupled wheels. For the lower side, we need to find Fp,.

dr d F F 0 + Nrsi Ny sinf FrR;, — FrR
g dede Tcosy + Frcos + Npsiny + Npsin Jeosd + LLBL ZFTRT b -
2IL 2 my Ib
Nrsi N, 0 R Fr dy, d F R2
( rsing + Nysin Jeost + Fr TRL — —cos¢cos€ Fr— L 2L 2L hs20 — Fr, =0 (51)
my I my 2] 2 my Ib

recognizing that this can be written in the form of A+ BFpr + CFp, =0 (52)

A = (Npsiny + NLsinH)C;—SG (53)
b

RT Ry, B coscost

B= 54
T - (54)
I B A
4IL my Ib
A+ BF
F’L7 bottom gripped, free wheels — TT (56)
For the top side, we need Fr.
dr d F F 0 + Nrsi Ny sinf F —F
B Tll ( Tcosy + Frcosf + Nrsiny + Npsin Jeosth — LRI T Rp Rr (57)
217 2 my, I
Nrsi N, 0 R F dr d F R R
( rsing + Nisin Jcosy — FTfTRT— l6082¢ Fr— LT +*LCOS€CO$7//_FL L =0 (58)
mp I my 2] 2 my Ib
recognizing that this can be written in the form of D+ EFp + FFr =0 (59)
D = (Npsiny + NLsan) 08y (60)
my
o RrRt B cosBcosy (61)
Ib my
2 2 2
F:_L_M_& (62)
4IT my Ib
D+ EF
F‘T7 top gripped, free wheels — TL (63)

The same analysis is repeated for the coupled flywheel case. When the lower wheel grips, we need to
find FL.

d d
—Fris - LY dy

IL+IT/G2 2

F F 0 + Nrsi Ny sinf F - F
( rcosy) + Frcosd + Npsiny + Npsin Jeosd + TRy, TRTRL (64)
my Iy
Nysing + Ny sinf Rr Fr e q
s0 + F —R - — 0 — Fp—="r—— —
(N S s+ P Ry = 1 costeost) — Py 2
& dy F R?

) p— LT I 65
L T )G2 2 my” I, (65)
recognizing that this can be written in the form of A+ BFr + CFp =0 (66)

0
A = (Npsint + Ny sind) — (67)

mp

drd

B RrRy, _ cosypcost B Y Ten (68)

Iy myp In+ Ir/G?

d2

o _ + _cos%_ﬁ (69)

Iy + IT/G2 my I

A+ BF
FL, bottom gripped, free wheels = TT (70)



For the top side, we need Fr.

d d
—Fris - FLY% dy

GIL+IT/G 2 -

Frcosy + Frcos® + Nysiny + Ny sinf v — FLR;, — FrRr

R
( o )cos 7, T
NTSinllJ + NLsinG RT FT 9 % dT
— L _ T —Fp—_ 26 7T
( my )COS¢ T I Fr mbCOS ¥ TGIL +IT/G 2
dr
-5 dT FL RLRT
e ———— ] F =0
LGIL+IT/G 2 mbCOS cosp+ Fi I
recognizing that this can be written in the form of D + EFy, + FFp =0
D = (Npsiny + NLsinG)ﬂ
mp
o R Rt dL4dT cosBcostp
- I GI, + IT/G myp
2
o Z% _ cos?1 _ RfQT
GIy, + IT/G my I
D+ EFy,
FT, top gripped, free wheels — T

For the case of both being gripped, we simply solve simultaneously.

A+ BFr+CFrp,=0and D+ EF;, +FFr =0

. _AF-BD
L, both gripped = BE —CF
CD - AE

F ] ripped — H 1 o~
T, both gripped BE _CF

State is determined as

d
top attached when wT?T <wvp —wpRT

d
lower attached when wL7L < v, +wpRy.

All that’s left is to set up the state equations and initial conditions.

a

dtwb*ab
da.

dar’ T
dl'

—T ="
dt b
Ay,
dthf T
d
arr T AL
”Ub(O):O
z(0)=0

wT(O) = wT,o
OJL(O) = UJL’O

when © > x.nd terminate
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4 Hybrid Pitchers

An interesting design proliferated during the FRC 2020 season, consisting of a hooded pitcher with an
extra set of ’afterburner’ wheels where the hood would terminate. This could be modeled fairly easily
(I simply haven’t gotten to it yet). I may transfer the calculator into a single one consisting of only the
hybrid pitcher, as hooded and dual-wheel pitchers could be considered just special cases.

5 Sanity Checks

These are new analysis techniques so there is no prior art to compare to. However, we can still perform
some sanity checks.

EveryCale ‘ 05 | ‘ Engien - ‘ Hood and Wheel Pitcher
Ball Diameter 7 +- fin] O eV NEQ 5 Eamptal ProTips | o
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Ball MOI Ratio 2/5 +- -1 Itage |12 v Exit Angle 15.000 +/- 0.000 Red: An error has occurred with the results.
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Flywhee| Target Velocity 3000 +i- [RPM]
Launch Simulation Spin-Up Simulation
36.0 /1680 3420 168 3010
31571470 3010 " 2580
Z  zojum 2380
3 120 2150
£
& 22571050 as = H
3 £ 2 6 17120 g
= s % )
] H
18.0/840 720 E-1 H
= [ n
= 3§ 72 1290 ]
¥ gt H
£ 135630 o £ 3 £
= H H
£ z £
g 8 860
3 9.0/420 860
a
15/210 430 “ 420
o o o o
0 u 2 3 4 33 o6 7 58 29 0 0015 0030 0083 0068 0075 0090 0103 0020 0135 0130
Position [deg] Time [s]

Figure 10: Hooded Flywheel Calculator - Exemplary Case

We can quickly check the relationship between ball velocity, ball spin, and wheel speed at exit. If the
ball has finally latched onto the wheel, we’d see that the surface speeds of the wheel and ball should
match. That is to say,

w d
Ub—|—wb§ zwl,,?. (92)

Numerically in this case,

27 /60rad/s 5. ft 27 /60rad/s 6. ft
TRPM (2 X 1o 24260 RPM o —oe i X o X o

ft ft,
63.5310— ~ 63.5282 . (94)

ft
BLT66— + 1456 RPM x (93)

Is the wheel drop realistic? Let’s look at the lost energy. There’s definitely some losses as the ball
interaction has friction, but let’s quantify it.
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E = myv? + Lyw? + L,w?,
Einis = 4lbm in® x (3000RPM)? = 115.5J
Efina = 0.3lbm x (31.766ft/s)?

5 :
+50.3lbm(517n)2 % (1456RPM)2

+4lbm in* x (2426RPM)? = 93.45]
_ Efina _ 93.45]

Ejir  115.5]

n =80.9%

(98)

That’s an efficiency less than 100% (good, physics didn’t break), and it isn’t dreadfully low (signalling

that there isn’t too much slippage).

The rev-up simulation does have some prior art to compare to, luckily. We can run basically the exact

same simulation in the simple mechanism calculator.

EveryCalc

0-5‘ | English - |

General Mechanism Calc

Gearbox
Voltage |12 V]
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w
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3
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H
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Figure 11: Revving up a 4 Ibm in? flywheel with a single NEO motor.

Force [Ibf]

Current [A] [

This shows it takes 0.154 seconds to rev up- nearly the same as the 0.153 in the previous example. Note
that the efficiency is specified as 100 percent- this is because the rev-up calculator instead uses a bearing

friction value that the general mechanism calculator doesn’t have.
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